Effect of Furnace Heating Temperature on the Hardness and Corrosion Resistance of Plain Carbon Steel
##plugins.themes.academic_pro.article.main##
Abstract
Microstructure modification of the plain carbon steel usually enhances hardness and corrosion resistance. Therefore, in the present research, the microstructure of plain carbon steel is modified by heating it in an electric furnace using various temperatures and then quenching it in engine oil to enhance corrosion resistance and hardness. Several characterizations were conducted, such as microstructure, hardness, and electrochemical behavior. The microstructure evolution indicates a clear transformation of martensite morphology with decreasing austenitizing temperature. Decreasing the furnace's heating before quenching could increase the specimens' hardness and corrosion resistance, with values around 586.36 HV and 0.135 mmpy. Therefore, the optimal heat treatment condition for plain carbon steel components in marine environments was found at 800 °C based on the results of this study.
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c): Sopiyan Sopiyan, Syaripuddin Syaripuddin, Syamsuir Syamsuir, Fuad Ansori, Muhammad Yunan Hasbi, Ahmad Lubi, Ferry Budhi Susetyo (2025)References
[2] E. Miftah, “The Impact of Heat Treatment on Hardness and Corrosion Resistance of Medium Carbon Steel,” Int. J. Electr. Eng., vol. 3, no. 2, pp. 47–57, 2025.
[3] H. Liang, X. Shi, and Y. Li, “Technologies in Marine Antifouling and Anti-Corrosion Coatings: A Comprehensive Review,” Coatings, vol. 14, no. 12, p. 1487, 2024, doi: 10.3390/coatings14121487.
[4] J. Du, J. Li, Y. Feng, J. Ning, S. Liu, and F. Zhang, “Effect of layered heterogeneous microstructure design on the mechanical behavior of medium carbon steel,” Mater. Des., vol. 221, p. 110953, 2022, doi: 10.1016/j.matdes.2022.110953.
[5] R. R. Garbade and N. B. Dhokey, “Overview on Hardfacing Processes, Materials and Applications,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1017, no. 1, p. 012033, 2021, doi: 10.1088/1757-899X/1017/1/012033.
[6] K. D. Ambiger et al., “Influence of gas carburization on the microstructure, mechanical properties, and alloying elements behaviour in plain and alloyed low carbon steels,” Mater. Res. Express, vol. 12, no. 4, p. 046507, 2025, doi: 10.1088/2053-1591/adc9fe.
[7] U. S. Nwigwe, C. S. Obayi, R. Umunakwe, U. C. Nwokenkwo, and S. O. Mbam, “Effects of Different Holding Time and Quenchants on the Hardness and Corrosion rate of Medium Carbon Steel,” J. Mater. Environ. Sci., vol. 12, no. 7, pp. 962–973, 2021.
[8] M. Andreansyah, R. D. Anjani, and V. Naubnome, “Pengaruh Proses Heat Treatment (Quenching dan Tempering) Terhadap Kekerasan dan Struktur Mikro Baja Karbon Menengah,” J. Serambi Eng., vol. 9, no. 1, pp. 7864–7872, 2024, doi: 10.32672/jse.v9i1.791.
[9] S. Alfarisyi, Syamsuar, and Jufriadi, “Pengaruh Proses Heat Treantment Dengan Media Quenching Oli Terhadap Kekerasan Struktur Mikro Baja Karbon Menengah AISI 1045,” J. Mesin Sains Terap., vol. 9, no. 2, pp. 108–113, 2025, doi: 10.30811/jmst.v9i2.7849.
[10] M. Saifannur, S. Syamsuar, and A. Ibrahim, “Pengaruh Variasi Media Quenching Dan Aging Terhadap Kekerasan Sambungan Lasan Pipa API 5l Grade B,” J. Mesin Sains Terap., vol. 8, no. 1, p. 27, 2024, doi: 10.30811/jmst.v8i1.5074.
[11] G. Y. Pratama and Yunus, “Pengaruh Post Weld Heat Treatment (Pwht) Dengan Variasi Media Pendinginan Hasil Pengelasan Smaw Pada Pipa Kilang Astm a 106 Grade B Terhadap Kekuatan Bending Dan Struktur Mikro,” J. Tek. Mesin Unesa, vol. 10, no. 3, pp. 69–76, 2022.
[12] V. Srinivasan, H. Hasainar, and T. N. Singh, “Experimental study on failure and fracturing attributes of granite after thermal treatments with different cooling conditions,” Eng. Geol., vol. 310, no. May, p. 106867, 2022, doi: 10.1016/j.enggeo.2022.106867.
[13] Sopiyan, Syaripuddin, A. Ahmad, D. Nanto, S. D. Yudanto, and F. B. Susetyo, “Enhancement In The Hardness And Corrosion Resistance Of Mild Steel Surfaces By Nickel-Chromium Addition And Rapid Cooling After Welding,” J. Appl. Sci. Eng., vol. 27, no. 6, pp. 2655–2666, 2024, doi: 10.6180/jase.202406_27(6).0012.
[14] M. A. Sholikhin, A. Suprihanto, and Y. Umardani, “Analisis Pengaruh Perlakuan Panas (Heat Treatment) Terhadap Laju Korosi Pada Material Baja Karbon Menengah AISI 1045 Pada Air Laut,” J. Tek. Mesin S-1, vol. 9, no. 1, pp. 163–170, 2021.
[15] A. B. Putratama, A. Suprihanto, and Y. Umardani, “Analisis Pengaruh Perlakuan Panas Tehadap Laju Korosi Baja Skd-11 dalam Larutan 3% NaCl,” J. Tek. Mesin, vol. 9, no. 4, pp. 597–604, 2021.
[16] F. H. Hermawan and M. A. Mochtar, “Effect of Austenitizing Temperature on Microstructure, Amount of Retained Austenite, and Hardness of AISI O1 Tool Steel,” in AIP Conf. Proc., 2024, vol. 2710, pp. 070001–1–070001–6, doi: 10.1063/5.0167139.
[17] O. I. Sekunowo, B. O. Bolasodun, and M. D. Akin-Adamu, “Mechanical Characterization of Inter-Critical Temperature-Treated Medium- Carbon Steel under varied Cooling Conditions,” Niger. Res. J. Eng. Environ. Sci., vol. 10, no. 1, pp. 83–91, 2025, doi: 10.5281/zenodo.15778181.
[18] S. Sutrisno, A. Azmal, and D. Handoko, “Analisa pengaruh temperatur pemanasan pada proses normalizing dan hardening quenching terhadap kekuatan tarik dan struktur mikro baut ST-60,” Turbo J. Progr. Stud. Tek. Mesin, vol. 10, no. 2, pp. 166–176, 2021, doi: 10.24127/trb.v10i2.1515.
[19] G. D. Haryadi, A. F. Utomo, and I. M. W. Ekaputra, “Pengaruh Variasi Temperatur Quenching Dan Media Pendingin Terhadap Tingkat Kekerasan Baja AISI 1045,” J. Rekayasa Mesin, vol. 16, no. 2, p. 255, 2021, doi: 10.32497/jrm.v16i2.2633.
[20] Syaripuddin et al., “Nichrome Dependency in Welding Layer Using In situ Fabrication on Hardness and Corrosion Properties,” Sci. Technol. Indones., vol. 9, no. 3, pp. 651–659, 2024, doi: 10.26554/sti.2024.9.3.651-659.
[21] S. Bakhshi and A. Mirak, “Textural development, martensite lath formation and mechanical properties variation of a super strength AISI4340 steel due to austenitization and tempering temperature changes,” Mater. Charact., vol. 188, p. 111923, 2022, doi: 10.1016/j.matchar.2022.111923.
[22] F. Shi, J. Zheng, J. Zhang, Y. Zhao, and L. Chen, “Heat Treatment Process, Microstructure, and Mechanical Properties of Spring Steel with Ultra-High Strength and Toughness,” Metals (Basel)., vol. 14, no. 2, p. 180, 2024, doi: 10.3390/met14020180.
[23] B. Białobrzeska, Ł. Konat, and R. Jasiński, “The influence of austenite grain size on the mechanical properties of low-alloy steel with boron,” Metals (Basel)., vol. 7, no. 1, pp. 1–20, 2017, doi: 10.3390/met7010026.
[24] V. Sinha, M. Gonzales, and E. J. Payton, “Microstructural Refinement in a Low Alloy High Strength Martensitic Steel,” Metallogr. Microstruct. Anal., vol. 14, no. 2, pp. 404–421, 2025, doi: 10.1007/s13632-024-01162-2.
[25] A. Wong, “Modelling the stability and transformation kinetics of retained austenite in steels,” Mater. Sci. Technol. (United Kingdom), vol. 38, no. 11, pp. 676–688, 2022, doi: 10.1080/02670836.2022.2063539.
[26] T. Tsuchiyama, Y. Amano, S. Uranaka, and T. Masumura, “Effect of initial austenite grain size on microstructure development and mechanical properties in a medium-carbon steel treated with one-step quenching and partitioning,” ISIJ Int., vol. 61, no. 2, pp. 537–545, 2021, doi: 10.2355/isijinternational.ISIJINT-2020-543.
[27] A. Ilham, M. F. F. Adzima, O. D. Heryanto, F. A. Ferdinand, and I. Azmy, “Pengaruh Variasi Proses Perlakuan Panas Terhadap Struktur Mikro Dan Sifat Mekanik Baja Aisi 1018,” Sigma Tek., vol. 6, no. 1, pp. 137–144, 2023, doi: 10.33373/sigmateknika.v6i1.5120.
[28] A. Zayadi, Sungkono, Masyhudi, and E. Setyawan T, “Pengaruh Waktu Tempering terhadap Karakter Baja s45c Pasca Quenching pada 950oc dan Tempering 500 C,” J. Teknol. Kedirgant., vol. 7, no. 1, pp. 34–65, 2022, doi: 10.35894/jtk.v7i1.53.
[29] A. F. Abidah and N. S. Drastiawati, “Analisa SS400 Hasil Carburizing Media Arang Tempurung Kelapa-BaCO3 Dengan Variasi Temperatur Pemanasan Dan Holding Time Ditinjau Dari Pengujian Kekerasan Dan Struktur Mikro,” J. Tek. Mesin Unesa, vol. 7, no. 2, pp. 1–8, 2019.
[30] I. Basori, I. Masitah, F. B. Susetyo, and D. Nanto, “The Effect of Quenching Process on The Microstructure and Hardness of AISI 4140 Steel,” in Journal of Physics: Conference Series, 2024, p. 012020, doi: 10.1088/1742-6596/2866/1/012020.
[31] Ž. Z. Tasić, M. B. Petrović Mihajlović, M. B. Radovanović, and M. M. Antonijević, “Electrochemical investigations of copper corrosion inhibition by azithromycin in 0.9% NaCl,” J. Mol. Liq., vol. 265, pp. 687–692, 2018, doi: 10.1016/j.molliq.2018.03.116.
[32] M. Ahmadi, O. Mirzaee, M. Azadi, and H. Biukani, “Effects of various double-quenching treatments on the microstructure and corrosion properties of D2 tool steel,” Int. J. Press. Vessel. Pip., vol. 202, p. 104915, 2023, doi: 10.1016/j.ijpvp.2023.104915.
[33] S. Pareek, D. Jain, D. Behera, S. Sharma, and R. Shrivastava, “A review on inhibitors alleviating copper corrosion in hostile simulated sea-water (3.5 wt.% Nacl solution),” in Materials Today: Proceedings, 2021, vol. 43, pp. 3303–3308, doi: 10.1016/j.matpr.2021.01.966.
[34] H. M. Hussien et al., “Experimental and Theoretical Evaluations: Green Synthesis of New Organic Compound bis ethanethioyl oxalamide as Corrosion Inhibitor for Copper in 3.5% NaCl,” Egypt. J. Chem., vol. 66, no. 3, pp. 189–196, 2023, doi: 10.21608/EJCHEM.2023.182301.7364.
[35] S. Yang et al., “Influence mechanism of heat treatment on corrosion resistance of Te-containing 15–5PH stainless steel,” Corros. Sci., vol. 225, p. 111610, 2023, doi: 10.1016/j.corsci.2023.111610.
[36] Y. Zhao et al., “Influence of microstructure on the corrosion behavior of super 13Cr martensitic stainless steel under heat treatment,” Mater. Charact., vol. 175, p. 111066, 2021, doi: 10.1016/j.matchar.2021.111066.
[37] Fachrurrazi, Nurdin, and Zuhaimi, “Pengaruh Variasi Media Pendingin Pada Proses Pack Carburizing Material St-41 Terhadap Kekerasan Dan Struktur Mikro,” J. Mesin Sains Terap., vol. 9, no. 2, pp. 69–75, 2025, doi: 10.30811/jmst.v9i2.7843.
[38] A. W. Y. P. Parmita, B. C. Priyandoko, H. A. Dewanto, R. A. Tanjung, S. A. Bramantyo, and R. Febriyanto, “Analisis Pengaruh Variasi Temperatur Proses Pack Carburizing Terhadap Laju Korosi Material Baja Karbon ASTM A36,” SPECTA J. Technol., vol. 5, no. 2, pp. 186–195, 2021, doi: 10.35718/specta.v5i2.279.